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Abstract. In this paper, we present a system to redistribute computa-
tional power in plane sweeping. Plane sweeping allows the generation of
novel viewpoints of a scene by testing different depth hypotheses across
input cameras. Typical plane sweeping approaches incorporate a uni-
form depth plane distribution to investigate different depth hypotheses
to generate a depth map. When the scene consists of a sparse number
of objects, some depth hypotheses do not contain objects and can cause
noise and wasted computational power. Therefore, we propose a method
to adapt the plane distribution to increase the quality of the depth map
around objects and to reduce computational power waste by reducing
the number of planes in empty spaces in the scene. First, we generate
the cumulative histogram of the depth map of the scene. This depth map
can be obtained from the previous frame in a temporal sequence of im-
ages, or from a depth camera with lower resolution or quality. Next, we
determine a new normalized depth for every depth plane by analyzing
the cumulative histogram. Steep sections of the cumulative histogram
will result in a dense local distribution of planes; a flat section will re-
sult in a sparse distribution. The results, performed on controlled and on
real images, demonstrate the effectiveness of the method over a uniform
distribution and the possibility of using a lower number of depth planes,
and thus a more performant processing, for the same quality.

1 Introduction

View interpolation is an important technique for computational video and pho-
tography, allowing the generation of novel viewpoints from a scene. A number
of real cameras are capturing a scene. Using view interpolation, it is possible to
generate images from non-existing camera views using the images from the real
cameras. This can increase the user experience, for example in sports broadcast-
ing [1, 2] and video conferencing [3].

View interpolation is typically achieved by using 3D reconstruction or by
image-based rendering. 3D reconstruction estimates the geometry of the scene



and can choose the novel viewpoint accordingly. The most notable methods are
visual hull [4, 5], photo hull [6] and space carving [7]. While 3D reconstruction
allows a large range of novel viewpoints, the reconstruction is typically slow and
the quality is limited to the quality of the reconstructed 3D models.

Image-based rendering, on the other hand, does not use geometry-based mod-
els of the scene. Instead, only the images are used to generate the novel image
directly. The most known approach is the generation of depth maps for small
baseline setups using stereo matching [8, 9] and plane sweeping [10, 3], including
depth-selective plane sweeping for two views [11] or for large scenes [2].

In the plane sweep approach, the scene is divided in planes, all representing a
depth hypothesis. The input cameras are projected to a plane, and backprojected
to the virtual image plane. By comparing the photoconsistency of every depth
plane for every pixel of the virtual image, an optimal virtual image with a depth
map can be created. We propose a system to reduce the waste of computational
power for the plane sweep approach.

Typically, the planes for the depth hypotheses are distributed evenly in the
scene space, thus allocating uniform computational power to all depth hypothe-
ses. Because the scene typically does not have a uniform distribution of objects,
wasted performance can be perceived by considering depth values where no ob-
jects are present. Therefore, we present a system where the distribution of the
planes is adapted to the scene. A histogram is calculated of the resulting depth
map to determine the plane distribution for the next temporal frame. This will
redistribute computational power to the more dense regions of the scene, and
consequently increase the quality of the interpolation by reducing mismatches
and noise.

The used histogram is obtained from the depth map of the previous frame, or
from the depth map generated by an active depth camera. When using the depth
map from the previous frame, no extra hardware is required. However, the depth
hypotheses adaptation lags one frame. When using an active depth camera, no
lag is present, but hardware considerations may limit the working range of the
setup. We used the Microsoft Kinect [12] as active depth camera, limiting the
depth range to 5 meters. Furthermore, the resolution and the image quality are
low, such that the depth map cannot be used directly for view interpolation.
However, the depth map is adequate to be used in our plane redistribution
method, thus effectively creating a hybrid method between low resolution active
depth cameras and high resolution multi camera depth methods.

Multiple methods have been proposed to reduce plane sweep complexity,
reduce required computational power and increase quality. The method of Rog-
mans et al. [11] also uses a histogram to select applicable depth ranges, but
without redistributing or changing the plane density. Gallup et al. [13] propose
a histogram-based method to determine the optimal orientation of the planes
to increase quality and reduce computational complexity, but also without opti-
mizing for sparse scene regions.

The view interpolation system is achieved using commodity GPU hardware
to acquire real-time processing. By redistributing computational power to signif-



icant parts of the scene, less power is wasted and more is available to other image
processing stages, such as demosaicing [14], segmentation or depth filtering [2].

2 View Interpolation using Plane Sweeping

View interpolation allows the generation of novel views of a scene. We accomplish
this by using the well-known plane sweep approach [15], implemented using
traditional GPU paradigms to acquire real-time processing by leveraging the
projective texturing capabilities of Cg shaders. We place a number of cameras
directed at the scene and calibrate them to acquire the projection matrices Pi

using the Multicamera Calibration Toolbox of Svoboda et al. [16]. Using those
cameras, we can construct a novel viewpoint and generate the image thereof
using a plane sweeping approach.

First, we divide the space in front of the virtual camera Cv into M planes
on different depths Di with Dmin ≤ Di ≤ Dmax, parallel to the image plane of
the virtual camera. Then, for every plane, we project the input camera images
Ci to the plane, reproject them to the image plane of the virtual camera Iv and
calculate the photoconsistency of every pixel on the virtual plane. This process
is demonstrated in Fig. 1.

To acquire a metric for the photoconsistency, we use a cost function, aggre-
gated over a window to improve quality. The cost function is defined as the sum
of squared differences (SSD):

σ(x, y) =
N∑
i=1

∥γ − Ci(x, y)∥2

3N
with γ =

N∑
i=1

Ci(x, y)

N
(1)

where γ is the average of the reprojected pixels and Ci is the i
th input image

of total N . The final photoconsistency error is acquired by aggregating the SSD
for the pixels in a fixed-size window, weighted by a (separable) Gauss filter:

ϵ(x, y) =
∑
u,v

w(u, v)σ(x+ u, y + v) (2)

for a window with coordinates u and v, centered at (x, y), and Gauss weights
w(u, v).

The depth plane with the lowest error value ϵ is chosen, thus selecting the
depth value with the highest photoconsistency using a winner-takes-all approach.
This will result in a simultaneous generation of the depth map and the final color,
γ.

Quality is increased by using a foreground/background segmentation applied
to the input images. ϵ(x, y) is set to infinity when the projected pixels contains a
background pixel. This will reduce mismatches caused by noise in the background
and will reduce disappearance of foreground objects on a uniform background.
This is due to the similarity of every pixel on a uniform background, thus ob-
taining a low error value ϵ for incorrectly matched background pixels. This will



Fig. 1. Plane sweeping. The space in front of the virtual camera is divided in planes
on different depths. The photoconsistency of every pixel for every plane is considered
in the selection of the optimal depth plane, thus selecting the optimal depth and color
for the virtual image.

result in the destruction of the foreground objects. These artifacts are greatly
reduced by processing the foreground and the background independently.

In the traditional approach [15], the planes are distributed uniformly in the
sweeping space. However, this will allocate computational resources to depth
planes where no scene information is available. Therefore, we propose a method
to reduce wasted computational power and increase quality in important regions
of the scene.



3 Adaptive Non-Uniform Plane Distribution

When the scene consists of a limited range of depths between Dmin and Dmax,
some processing resources are allocated to depth planes where no scene is avail-
able. This is demonstrated in Fig. 2(a). Here, a lot of planes are placed in the
scene where no objects are positioned. This will waste resources and introduce
more noise due to mismatches between the cameras. Therefore, we rearrange the
distribution of the depth planes to provide fewer planes in depth ranges with less
object, and more, dense planes in scene regions with more objects. We determine
the interest of a depth by analyzing the previous frame in a temporal sequence,
or use the depth map of a depth camera.

When using the depth map of the previous frame, we generate the histogram
of the depth map using the well-known occlusion querying method [17] on GPU,
allowing fast processing. The histogram can be seen in Fig. 2(b). The occurrence
of every depth value, as determined by the depth of the depth planes, in the depth
map is counted. The histogram will have discrete depth values between Dmin

and Dmax, represented by the depth plane numbers, because there is a limited
number of planes. Scene depths of high interest will contain more depth values
than depths of low interest. If there are depths in the scene where no objects
are present, few of this depth values will be available in the depth map and
this will be reflected in the histogram. In the next frame, we want to provide
more planes in depth ranges where a lot of depth values can be found, thus
where there are large values in the depth histogram. The depth planes are not
necessary uniformly distributed, thus the histogram uses the depth plane number
as the bin value, instead of the depth directly. When using the depth camera, the
depth map is used directly. All depth values are converted to the corresponding
depth values in the coordinate space of the color cameras before using them in
the histogram creation. These depth values correspond to plane depths, thus
creating an analogous histogram as the previously discussed method.

To use the depth distribution information, we convert the histogram to its
cumulative version, as shown in Fig. 3. Here, we do not count the number of oc-
currences per depth value, but we also include the number of occurrences lower
than this depth. Furthermore, we rescale the depth values from [Dmin, Dmax],
as represented by the depth plane numbers, to [0, 1]. This will transform the
non-uniform distribution of the depth planes to actual normalized depth val-
ues between 0 and 1. This transformation will generate an increasing function
H(x) = y, where x ∈ [0, 1] is a normalized depth value and y is the number of
values in the rescaled depth map smaller or equal to x. For values of x where
there are a lot of corresponding values in the depth map, H(x) will be steep.
For values of x with a low number of occurrences, H(x) will be flat. Because
of the non-uniform depth plane distribution as input, H(x) will be constant at
some points where there were no depth planes for the corresponding normalized
depth value.

We will use the cumulative histogram to determine a mapping of a plane
number m with 0 ≤ m < M to a depth value Dm with Dmin ≤ Dm ≤ Dmax.
For a uniform distribution, this would be:



Fig. 2. (a) Uniform plane distribution (b) Histogram of the depth values.

Fig. 3. (a) Resulting histogram (b) Corresponding cumulative histogram H(x).

Dm = Dmin +
m

M
(Dmax −Dmin) (3)

We will adapt this uniform distribution method. When using the cumulative
histogram to determine the distribution, we calculate a fraction τm ∈ [0, 1] based
on the plane number m, applied as follows:

Dm = Dmin + τm(Dmax −Dmin) (4)

The fraction τm is determined by the cumulative histogram. The Y axis is
divided in M cross sections, with a distance λ from each other, where λ =
max(H)/M . Each cross section represents a depth plane m. The actual depth
fraction τm for each cross section σm , i.e. a depth plane, is calculated by first
determining the depth value xσm where H(xσm) ≤ σm and H(xσm + 1) > σm.
This is demonstrated in Fig. 4. Because the depth values x in the cumulative
histogram are discrete, finding a value xσm where H(xσm) = σm is unlikely, and
not desirable when generating planes that are dense, i.e. closer together, than
the depth values provided in the cumulative histogram.



Fig. 4. Detail of the cumulative histogram with discrete values. τ is calculated by
determining xσm and xσm + 1, such that H(xσm) ≤ σm and H(xσm + 1) > σm, where
σm represents a depth plane number.

Once xσm is determined, τm is calculated as follows:

ϕ =
mλ−H(xσm)

H(xσm + 1)−H(xσm)
(5)

τm = ϕ(xσm + 1) + (1− ϕ)(xσm) (6)

Figure 3(b) shows the transformation from a uniform depth plane distribution
to a non-uniform distribution based on the cumulative histogram. In point (1),
where the cumulative histogram is steep, there will be a dense plane distribution,
as can be seen at (1*). When the cumulative histogram is flat, a sparse plane
distribution is acquired, as can be seen at (2*).

Using τm, an actual depth for every plane m (0 ≤ m < M) is determined
and used in the plane sweeping step:

Dm = Dmin + τm(Dmax −Dmin) (7)

This can be seen in Fig. 5. Here, the planes are redistributed using the cu-
mulative histogram of Fig. 3(b). As can be seen, more planes are available for
determining the depth of the objects, and fewer planes are available in empty
space. It is desirable to include some planes in the empty spaces between objects
to allow the appearance of objects in dynamic scenes. To allow this, all the val-
ues in the histogram are increased with a fixed number, based on the number
of pixels. This way, the cumulative histogram will be less flat in less interesting
regions, allowing some planes here. In our tests, 0.1% of the total amount of
pixels demonstrated to be a correct value.



Fig. 5. Redistributed depth planes.

4 Results

We tested the proposed method on different scenes and compared image quality
and planes required.

The first experiment shows the quality increase when a low number of planes
is available. To increase overall quality in both methods, foreground and back-
ground segmentation is used. Figure 6(a) shows the result for a uniform depth
plane distribution. Artifacts caused by the sparse plane distribution can be
clearly seen; the depth map shows clear outliers. The depth map when using
a non-uniform plane distribution, based on the histogram of the first depth
map, can be seen in Fig. 6(b). Less noise and outliers in the depth values can
be perceived. Furthermore, the silhouette is more distinct and the features of
the persons are clearer. Using the non-uniform plane distribution increased the
quality of the depth map using a low number of planes, thus increasing overall
performance.

Figure 6(c) shows the result for a high number of planes. Here, some noise
and unclear edges can be perceived. These artifacts are effectively filtered out
using the non-uniform plane distribution. The depth planes generating vague
edges and noise are not used and can not contribute to the depth map, and thus
to the noise and artifacts.

To demonstrate the effect of the cumulative histograms, Fig. 7 and 8 show
an input image of a video sequence (a), the corresponding cumulative histogram
of the depth map of the preceding frame (b) and the corresponding fraction τ
from equation 6 (c). When only one dominant depth can be perceived, such as
in Fig. 7, one steep section in the cumulative histogram is visible. This part will
be transformed to a flat value of τ , thus increasing the density of the planes in
the corresponding region in the sweeping space. Flat sections of the cumulative



(a) (b) (c)

Fig. 6. Comparison of the depth map with: (a) a uniform depth plane distribution (only
50 planes used), (b) a non-uniform depth plane distribution (only 50 planes used), and
(c) a uniform depth plane distribution (with 256 planes used).

histogram will correspond to steep values in the graph of τ , resulting in a sparse
plane distribution. When multiple dominant depths are available in the scene,
the cumulative histogram will show multiple steep sections (see Fig. 8). This
will result in multiple dense regions in the plane distribution, as reflected by the
values of τ in Fig. 8(c).

The second experiment shows the results for the interpolation for soccer
games. The video streams used are from a live game. We placed 8 cameras at
one side of the scene and performed real-time interpolation between the cam-
eras. To increase overall quality in both methods, foreground and background
segmentation is used. High-quality interpolation for soccer scenes consists of
different steps, apart from the plane sweeping, such as debayering and depth
filtering. Therefore, the interpolation step should be as fast as possible to reduce
execution time and allow real-time processing. By reducing the number of depth
planes, the performance can be greatly increased. By incorporating an adaptive
plane distribution system, such as described in section 3, fewer depth planes are
required while preserving high quality.

The results can be seen in Fig. 11. The quality is increased compared with the
uniform plane distribution, as seen in Fig. 10. Details of the quality difference
can be seen in Fig. 9. In the uniform plane distribution in 9(a), missing heads
and limbs can be perceived, caused by the low number of planes used to deter-
mine the interpolated view of the players. By redistributing the depth planes
to the position of the players, as can be seen in Fig. 11 and Fig. 9(b), artifacts
are seriously reduced. The non-uniform plane distribution method is especially
applicable to soccer scenes due to the sparse location of players on the field and
the multiple open spaces in the scene. Redistributing the depth planes will thus
increase performance by reducing the number of wasted planes. The quality is
not reduced by the movement of the scene due to the inclusion of depth planes in
empty space. By including a few number of depth planes in empty space, play-
ers moving in these spaces are detected and the plane distribution is adapted
accordingly.



Fig. 7. (a) Input image with one person. (b) Cumulative histogram of the depth map.
(c) New depth plane distribution. (d) Corresponding fraction τ for a given plane num-
ber.

To demonstrate the high quality of our results, we increased the number of
depth planes to 5000. The quality of the result is high, as shown in Fig. 12,
but real-time processing is no longer possible due to the high computational
requirements. Comparing Fig. 11 and Fig. 12, we see little difference, proving
the effectiveness of our method.

The last experiment demonstrates the results when using a lower quality
depth camera to obtain the histogram used for the determination of the plane
distribution. We used the Kinect [12] as the depth camera. The Kinect image
can be seen in Fig. 13(a), together with the corresponding color image. As can
be seen in the depth map, the quality is not sufficient for view interpolation, but
can be used for our method. The depth map is relatively complete, so we can
use fewer planes than when using the depth from the previous frame. We need
fewer planes for empty spaces to compensate for moving objects; the depth map
will contain these objects nonetheless. The resulting depth plane distribution
and corresponding cumulative histogram can be seen in Fig. 13.

Figure 14(a) shows the result for a uniform depth plane distribution using 10
planes. As can be seen, the depth map contains lots of errors, noise and artifacts;
many parts are missing or are incorrect. Figure 14(b) shows the result for a non-



Fig. 8. (a) Input image with two persons on different depths. (b) Cumulative histogram
of the depth map. (c) New depth plane distribution. (d) Corresponding fraction τ for
a given plane number.

uniform depth plane distribution using 10 planes, based on the depth map of
the Kinect. The depth map is complete, and noise and artifacts are seriously
reduced, while maintaining high performance. This demonstrates the usefulness
of a lower quality depth camera for our method. However, due to the limited
range of the Kinect, only small scale scenes can be used.

5 Conclusions

In this paper, we presented a method to reduce computational requirements for
view interpolation. When the depth of the scene is not distributed evenly, the
plane sweeping method can search in depth ranges where no objects are present,
thus reducing computational power and increasing the opportunity for noise.
Our method uses the cumulative histogram of the previous temporal frame or
from the depth map of a low quality depth camera to determine a more suitable
depth plane distribution where the planes are more dense in regions with objects
and sparse in regions with no objects. Some planes are assigned to empty spaces
to cope with dynamic scenes. All algorithms are implemented using commodity
graphics hardware to achieve real-time processing.



We tested the method on different kinds of input sequences, including a scene
under controlled conditions and a scene of a live soccer game. Both results proved
the effectiveness of the proposed method by providing high quality results with
a low number of depth planes, thus reducing computational requirements.
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(a) (b)

Fig. 9. Details of the quality differences between (a) figure 10 and (b) figure 11 (our
method).

Fig. 10. Plane sweeping of a soccer scene with a low number of depth planes (40) and
a uniform plane distribution. Many artifacts and missing people can be perceived.



Fig. 11. Plane sweeping of a soccer scene with a low number of depth planes (40) and
an adaptive plane distribution. The quality is greatly increased in comparison with
figure 10.

Fig. 12. Plane sweeping of a soccer scene with a high number of depth planes (5000)
and a uniform plane distribution. The quality is comparable with Fig. 11, which proves
the effectiveness of the method.



Fig. 13. (a) Kinect input image with one person, with the color image in the bot-
tomright corner. (b) Cumulative histogram of the depth map. (c) New depth plane
distribution for 10 planes. (d) Corresponding fraction τ for a given plane number.

(a) (b)

Fig. 14. Comparison of the depth map with: (a) a uniform depth plane distribution
(only 10 planes used), and (b) a non-uniform depth plane distribution using kinect
(only 10 planes used).


