
Optimal Data Distribution for Versatile Finite Impulse Response Filtering
on Next-Generation Graphics Hardware using CUDA

Patrik Goorts1, Sammy Rogmans1,2 and Philippe Bekaert1

1Hasselt University – tUL – IBBT,
Expertise centre for Digital Media,

Wetenschapspark 2,
BE-3590 Diepenbeek, Belgium

2Multimedia Group,
IMEC,

Kapeldreef 75,
BE-3001 Leuven, Belgium

Abstract

In this paper, we investigate discrete finite impulse re-
sponse (FIR) filtering of images, while harnessing the pow-
erful computational resources of next-generation GPUs.
These novel platforms exhibit a massive data parallel archi-
tecture with an advanced SIMT execution model and thread
management, to enable designers to better cope with the
infamous memory wall, i.e. the growing gap between the
cost of data communication and computational process-
ing. However, the concerning platforms still have hard
constraints that prevent trivial optimization of convolution
filtering. Although automatic (compiler) optimization is
available, we investigate and explain the speedup potential
considering manual intervention, given the context of FIR
kernels. Furthermore, we present multiple convolution im-
plementation techniques that are able to cope with the hard
platform constraints in different situations, while still being
able to optimize the implementation to the underlying archi-
tecture. Utilizing the acquired insights, a view is given on
the impact for possible optimization when loosening these
hard constraints in the near future.

1 Introduction

Discrete finite impulse response (FIR) filters or convo-
lutions serve many purposes, and are the primary driver
behind various practical applications. More specifically,
they can be used for simple image blurring to more com-

plex low-pass noise reduction filters with edge preservation
[2], edge detection [8], and even as the core mechanism for
real-time parallax determination [5, 13] and 3D reconstruc-
tion algorithms [4]. Since they are both computationally
and communication-wise very intensive, they often tend to
progressively increase the algorithm complexity, resulting
in inevitable application bottlenecks. Due to their inherent
heavy data reuse and memory communication, these bot-
tlenecks are most often caused by the ‘memory wall’ [1],
i.e. the increasing discrepancy of contemporary computer
architectures between the cost of data communication and
regular computations.

A lot of previous research has already been conducted,
considering either custom designed FPGA implementations
– e.g. Jiang et al. proposed using a three-level memory hi-
erarchy [6] to cope with the memory wall – or considering
the (distributed) use of CPUs [7]. However, the recent rev-
olution in graphics hardware has transformed commodity
graphics cards to massive data parallel coprocessors, en-
couraging the use of GPUs for various generic computa-
tions such like FIR filtering. Payne et al. [10] and Smirnov
et al. [14] investigated mapping FIR filtering on traditional
graphics hardware, but next-generation GPUs allow the use
of more generic programming paradigms and joint APIs,
enabling researchers to further tackle the infamous memory
wall. Contemporary graphics cards strongly resemble a hy-
brid distributed-shared memory (DSM) architecture, where
the programmer is more able to manually control and cache
data communication. Podlozhnyuk presented an implemen-
tation in [12], but restricted the research to single dimen-



sional convolutions, which put a heavy constraint on the
amount of applications that can be optimized. This paper
therefore focuses on optimal data distribution and commu-
nication in versatile FIR filtering, enabling a broad span of
applicability, while using generic next-generation GPUs as
the case study platform. Furthermore, we investigate multi-
ple convolution implementation techniques such as the con-
ventional method, separating kernels by singular value de-
composition, and fast Fourier transformations, to efficiently
cope with hard architectural constraints in different situ-
ations. We have used the compute unified device archi-
tecture (CUDA) from NVIDIA as the case study platform
without loosing generality, since the execution model and
joint DSM-alike architecture is analogous to the current
next-generation AMD ATI graphics cards, using the close-
to-metal (CTM) and Brook+ language. Thanks to their
close resemblance, the near future will introduce OpenCL
[9] and DirectX 11 compute shaders [3], abstracting current
vendor-specific approaches, also enabling the valorization
of this research in these future paradigms.

The outline of the rest of the paper is as follows: in Sec-
tion 2, more information about the inherent constraints of
the CUDA hardware and execution model is provided, to-
gether with the issues that arise to optimally implement a
convolution – and tackle the memory wall – on this generic
platform. Section 3 will describe the various convolution
techniques that try to cope with the hard platform con-
straints. Finally, in Section 4 the experimental results will
be presented, and Section 5 will conclude the paper.

2 Next-Gen GPU Platform Constraints

The next-generation GPU platform CUDA – and its suc-
cessors OpenCL and the DirectX 11 compute shader – has
several important constraints that directly impact the im-
plementation of a convolution on its given architecture and
execution model. Primarily, the architecture resembles a
DSM-architecture, containing a given set of multiproces-
sors. However, communication between multiprocessors is
not encouraged, making it impossible to implement integral
data reuse of cached communication, and therefore result-
ing in obligatory redundant memory reads.

Thanks to the architecture, the execution model is able
to embrace a single instruction multiple thread (SIMT)
paradigm – similar to the execution model of single in-
struction multiple data (SIMD) – that allows divergence
in the execution path between multiprocessors without any
penalty whatsoever. For this reason, a thread scheduler is
also able to manage different threads on the same multipro-
cessor, automatically improving the temporal utilization of
the processors. Furthermore, the execution model allows to
coalesce memory reads, to cope with the redundant reads
enforced by the architectural constraints.

Figure 1. CUDA hardware can be abstracted
as a number of SIMD multiprocessors, each
containing 8 (scalar) processors and a dedi-
cated on-chip shared memory to allow user-
managed caching and inter-thread commu-
nication. However, communicating between
multiprocessors is only possible through the
global video memory.

Figure 2. An image part allocated to one mul-
tiprocessor also needs to load the surround-
ing apron, since (slow) communication be-
tween multiprocessors is discouraged.

2.1 Architectural Model

As depicted in Fig. 1, the architectural model of CUDA
can be seen as a set of multiprocessors, each currently ex-
isting out of eight (scalar) stream processors that is capa-
ble of processing a thread. Each multiprocessor has a ded-
icated 16kB of on-chip shared memory that can be used as
a user-managed cache, and for efficient inter-thread com-
munication. Although communicating between threads in
the same multiprocessor can be done without leaving the
GPU chip, communication between multiprocessors is en-
forced through global off-chip video memory. Since this



memory is not located on the GPU chip itself, it is rela-
tively slow compared to on-chip data accesses, and there-
fore strongly discourages direct communication between
multiprocessors. Looking at Fig. 2, when an image is di-
vided into equivalent parts for individual multiprocessors,
the platform enforces redundant reads around the border
– i.e. the apron – of the image parts. Integral data reuse,
where every pixel only gets read a single time, is therefore
impossible or impractical to obtain with the presented user-
managed caches.

2.2 Execution Model

By discouraging communication between multiproces-
sors, the threads can be executed in a highly data parallel
fashion, allowing the execution model of CUDA to embrace
a SIMT paradigm. SIMT execution differs from standard
SIMD as the former allows individual multiprocessors to
take divergent execution paths.

Thanks to the SIMT execution model, a thread manager
is able to coordinate and perform context switches between
multiple threads on the same processor. The thread manager
will therefore try to switch between active threads when a
multiprocessor is idle, which increases the processor oc-
cupancy – i.e. the ratio between the active threads and the
maximum manageable threads of the scheduler.

Since the architecture enforces redundant memory reads,
the execution model tries to counter slow data commu-
nication by enabling the coalescing of memory reads, by
properly aligning multiple data reads in a consecutive man-
ner, and performing a single data transfer in parallel for all
threads. However, taking advantage of the memory coa-
lescing introduces significant constraints on the size of the
apron and image parts, obligating the designer to look for
an ideal trade-off.

2.2.1 SIMT Execution

The thread manager – i.e. NVIDIA GigaThread – pro-
cesses an execution grid, that is composed out of thread
blocks. The thread blocks exist out of a number of in-
dividual threads, with a current maximum of 512 threads,
and are grouped in SIMD batches called warps. Warps cur-
rently group 32 threads, and are the AMD CTM equivalent
of ‘wavefronts’, the OpenCL equivalent of ‘work-groups’,
and the DirectX 11 compute shader equivalent of ‘groups’.
The thread manager will allocate a thread block to a single
multiprocessor, and start executing warps in an SIMD fash-
ion, since there is only a single instruction decoder per mul-
tiprocessor. The threads in a block share the on-chip 16kB
of user-managed cache, and stay dedicated to that multi-
processor to avoid unnecessary intra-chip communication.
Therefore different thread blocks – even different warps –

Figure 3. Achieving coalesced memory reads
in (a) reading an aligned block of 16 × 32 bits,
and (b) discarding partial intermediate data.

are allowed to take divergent execution paths, without any
penalty whatsoever. When a warp communicates with the
global video memory, it takes about 600 clock cycles as op-
posed to a computation that can be performed in only a sin-
gle or two cycles. The global communication can cause the
warp to get idle, therefore the thread manager will switch to
a different warp to try and hide this latency. Because of this
dynamism, the paradigm is defined as SIMT, being more
advanced than regular SIMD.

2.2.2 Processor Occupancy

Currently, the thread scheduler is able to manage 1024 si-
multaneous threads on a single multiprocessor, while the



maximum number of threads in a single block is 512. Al-
though blocks get dedicated to a single multiprocessor, the
scheduler is capable of allocating another block to the same
multiprocessor, to maximize its temporal utilization. Be-
cause no prior knowledge is used to allocate blocks to a spe-
cific multiprocessor, inter-block communication – i.e. inter-
multiprocessor communication in general – is only possible
through the global video memory, and is strongly discour-
aged as it is relatively slow compared to on-chip data ac-
cess, which takes only a couple of clock cycles. Processor
occupancy is the ratio of the number of active threads to
the current maximum of 1024 threads, is expressed in 0 to
100%, and directly correlates to the temporal utilization of
the multiprocessor. However, the occupancy can only be
maximized if the memory footprint of the thread blocks is
small enough to allow other blocks to independently coexist
on the same multiprocessor with its 16kB of user-managed
shared memory and the given set of registers.

2.2.3 Memory Coalescing

To further counter the memory wall, i.e. the slow global
memory reads, the execution model allows to coalesce 16
consecutive data reads of 32 bit per thread into a single
block, if the latter is properly aligned in the global video
memory. In the most generic case, the individual memory
accesses of the threads need to be serialized on the mem-
ory bus between the video memory and the multiprocessor,
whereas reading a coalesced block in a single operation over
the memory bus, drastically decreases the required time to
transfer data to and from the off-chip memory. Fig. 3(a)
shows the most common case of coalescing by reading a
block of 16 × 32 bits that is aligned with one of the blocks
that is composed by dividing the global memory in equal
size blocks of 64 Bytes. On the other hand, discarding in-
termediate data of these blocks is still allowed, if the block
borders are kept aligned, as depicted in Fig. 3(b). However
– even in the case a block of 64 Byte is read – if the block
borders are not aligned, as shown in Fig. 4(a), the block
cannot be coalesced, and the consecutive reads are forced
to serialize in separate accesses. Even in the case the block
borders are aligned, but the reads are not performed in an
consecutive manner, the data accesses fail to coalesce into
a single read (see Fig. 4(b)), which introduces hard con-
straints to be able to take advantage of coalescing.

Generally speaking, the image parts and apron size need
to be selected to coincide with 64 Byte blocks, so that all
reads can be coalesced. This requires significant manual
intervention in efficiently mapping a convolution to this ar-
chitecture, however starting from CUDA compute capabil-
ity v1.2, the compiler automatically tries to align and co-
alesce data reads for the developer. Nonetheless the auto-
matic coalescing is efficient or not, the designer still needs

Figure 4. Failed memory coalescing in case
of (a) non-aligned block of 16 × 32 bits, and
(b) non-consecutive (interwoven) data reads.

to trade-off the growing amount of redundant data reads that
are involved by increasing the amount of blocks – i.e. the
image parts get smaller, but the apron size remains fixed –
and the spatial utilization of the GPU chip – i.e. when the
image parts get larger, the number of parts decreases, and
less multiprocessors can be kept busy.

3 Implementation Techniques

In order to cope with the many platform constraints of
next-generation GPUs in different situations, we have im-
plemented and investigated various image convolution tech-
niques. We first investigate the conventional method of per-



Figure 5. Designing and selecting a thread block in the execution grid, with (a) trivial data partitioning
setting the image part with both aprons as a multiple of 16, and (b) optimized data partitioning,
setting both left and right aprons and the image part individually as being a multiple of 16.

forming convolution, where proper care is taken on the im-
age part and apron, to be able both maximally coalesce
memory reads, and minimally induce divergence in the
SIMD executed warps. However, the conventional method
cannot be further optimized when the convolution kernel
size – and therefore the apron size – becomes significant
when compared to the image part.

To avoid the optimization constraints that occur when the
apron size becomes rather large compared to the image part,
we propose separating the convolution kernel using singular
value decomposition (SVD). By decomposing the kernel in
a set of horizontal and vertical single dimensional kernels,
we loosen the kernel size constraint without reducing the
possibility to optimize the implementation. As an alterna-
tive for the standard vertical filtering, the image and convo-
lution kernel are transposed to be able to fully exploit mem-
ory coalescing, by performing solely consecutive reads.

As a final alternative convolution technique, we perform
the versatile kernel as the Hadamard product of the fast
Fourier transformed (FFT) image and convolution kernel.
After all, by transforming both to the frequency domain, the
convolution between the image and kernel is transformed
into a simple entrywise product or multiplication. The result
is then inverse transformed back to the spatial domain. This
method does not induce any apron whatsoever, but never-
theless generates a significant amount of overhead to per-
form the Fourier transformations.

3.1 Conventional Method

To avoid warp divergence, individual threads to read the
apron should be allocated. The thread blocks will there-
fore have a larger size than the image parts, i.e. the sum
of the image part pixels and total apron size. As depicted

in Fig 5(a), a trivial data distribution in the conventional
method is to design the width of threads blocks as a multiple
of 16, without further constraining the apron and image part
individually. Since the apron threads only need to read data
and not perform any computations in their execution path,
this approach will not only cause divergence in the warps,
but will also prevent any thread to benefit coalesced reads.
However, if the apron width is also restricted to a multiple of
16 – as shown in Fig 5(b) – both the apron and image part
threads are inherently coalesced, and the warp divergence
will be minimized. Nevertheless, the convolution cannot be
optimized with this scheme, if the apron pixels completely
fill the thread block, without leaving any image part threads
to perform the actual convolution.

3.2 Filter Separation

To release the constraints of only being able to optimize
small kernels with the conventional method, the kernel is

Figure 6. Overhead concerning (a) filter sep-
aration, and (b) fast Fourier transform.



separated with SVD to a set of horizontal and vertical sin-
gle dimensional filter kernels (see Fig. 6(a)), e.g. a 3 × 3
kernel is separated to 3 horizontal and 3 vertical filter ker-
nels. The convolution can consequently be performed by
the following steps:

1. Calculate the SVD of the original kernel K, resulting
in three matrices U , D and V , where K = U×D×V T ,
and D is a diagonal matrix with elements d1 . . . dn.

2. For every column u of matrix U , iterate over the fol-
lowing consecutive kernel convolutions:

(a) Convolve the image with column u of U as an
individual single dimensional filter.

(b) Convolve the result with row v of V T , multiply
with du, and save the intermediate result as Su.

3. Calculate the sum of every Su, and the identical result
is achieved when compared to convolving the image
with kernel K, using the conventional method.

The reduction in individual kernel size has two major ad-
vantages; exponentially release the constraints of the size of
an optimizable filter kernel, and greatly reducing the joint
memory footprint, and therefore increasing the possibility
to achieve maximum processor occupancy. Since single di-
mensional vertical kernels do not exhibit consecutive mem-
ory reads in the linear global video memory, it is impossible
to efficiently coalesce the required data communication. To
tackle this problem, we transpose both the image and ker-
nel, enabling the kernel to be convolved horizontally. Anal-
ogous to switching to SVD from the conventional method,
this technique also introduces a significant overhead, which
can only be justified in the proper situation.

3.3 Fourier Transformation

By Fourier transforming both the image and the versatile
convolution kernel to the frequency domain, the convolu-
tion itself is transformed to a multiplication, as visualized in
Fig. 6(b). To be able to compute the convolution as the en-
trywise product of the transformed image and kernel, proper
padding needs to be preceded, to adjust both data structures
to same dimensions. The steps that need to be performed
are as follows:

1. Calculate the new dimensions w and h of the image
and kernel according to w = Kw + Iw − 1 and h =
Kh + Ih−1, where Kw,Kh and Iw, Ih are the kernel,
respectively image width and height.

2. Pad the image and the original convolution filter to w
and h with zeroes, while splitting the convolution ker-
nel in the four corners according to Fig. 6(b).

Figure 7. Automatic versus manual memory
coalescing, using the conventional method.

3. Calculate the fast Fourier transform of the padded im-
age and filter, perform the entrywise Hadamard prod-
uct, and calculate the inverse transform of the result.

Thanks to the possibility of computing the convolution by
the entrywise Hadamard product, apron threads have be-
come obsolete, and warp divergence can be completely
avoided. All threads in the block can therefore be used for
the actual convolution, nonetheless, the FFT requires a sig-
nificant overhead that cannot be neglected. We use the opti-
mized FFT implementation that is publicly available in the
NVIDIA CUFFT library [11], which further pads w and h
to the first consecutive prime number to speed up the trans-
formation. The advantage is that various kernel sizes there-
fore show an identical processing time, stepwise increasing
when w or h exceeds their first following prime number.

4 Experimental Results

The experiments were performed on a contemporary
NVIDIA GeForce GTX 295 harnessing 30 multiprocessors,
containing 240 (scalar) stream processors in total, and ex-
posing an amount of 1792 MB of global video memory.
Each multiprocessor has 16 kB of on-chip shared memory,
and a total of 16384 available registers. For the ease of
reporting, we used square convolution kernel shapes with-
out loosing generality, as the thread blocks can be shaped
rectangular – similarly to the rectangular kernel shape – to
match the same ratio of apron threads versus image part
threads. We first investigated the impact of automatic ver-
sus manual coalescing, and – as depicted in Fig. 7 – a drastic
increase in performance can still be noticed with respect to



Figure 8. Performing the conventional method (CM), versatile SVD (vSVD), Gaussian SVD (gSVD),
their transposed versions (vSVD-T, gSVD-T), and the FFT using (a) small and (b) large kernels.

manual intervention and optimization. Nevertheless, auto-
matic coalescing already improves the performance when
compared to no coalescing whatsoever. Since manual co-
alescing can result in speedups from 2 to 5x, we decided
to manually optimize all implementation techniques as de-
scribed in the previous section, to perform the following ex-
periments in the most optimized situations.

The various implementation techniques were examined
on an image resolution of 2048× 2048, in the case of small
(size 3–40) and relatively large (size 50–750) convolution
kernels, while the kernel separation with SVD was also
tested using both a versatile (random) and Gaussian ker-
nel. As the Gaussian is circular isotropic, the kernel sep-
aration will result in a special (best) case scenario, gen-
erating only a single horizontal and vertical single dimen-
sional convolution kernel. Looking at Fig. 8(a), the conven-
tional method clearly outperforms all other methods consid-
ering small kernels (size 3–15). These results are actually
strengthened by the findings of Podlozhnyuk in [12], which
indicate that small single dimensional kernels are further
accelerated by resorting to (automatic) texture caching in-
stead of using memory coalescing. Furthermore, we no-
tice that using the filter separation technique is only justi-
fied when kernels exhibit circular isotropic behavior, which
nicely follows the common intuition. However, in case of a
versatile kernel, the intersection point where SVD becomes
faster than the conventional method, is still slower than the
Fourier transformation. The constant timing of the Fourier
technique is thanks to padding both the image and kernel
size to the first following prime number of their sum. Since
the image size is rather large compared to the filter kernel,
the size of the latter becomes rather insignificant. Looking

at Fig. 8(b), a counterintuitive result can be noticed for cir-
cular isotropic convolution kernels. Although the intuition
would advise to use separability, in case of large kernels
the versatile approach with Fourier becomes significantly
faster. The reason lies in that fact that the GPU platform
constraints limit the amount of threads in a single block,
whereas less threads can be allocated to perform the actual
convolution, when the apron size – and joint threads – be-
come too significant. Although the transposition of the ver-
tical filtering does not really increase the speed considering
small kernels, the speedup does become noticeable in case
of larger kernel sizes, and is therefore advised.

Considering the design trade-off between redundant data
reads and spatiotemporal utilization or processor occu-
pancy, we performed the data distribution experiments on
a 10 × 10 and 256 × 256 image resolutions. Comparing
Fig. 9(a) and (b), it can be noticed that the trade-off is lin-
earized away when the image resolution grows. Basically
the reason is due to the limitation of 512 threads in a single
block, always resulting in a sufficient number of blocks to
be able to maximize the occupancy, without neglecting the
required memory footprint limitations of the block. How-
ever, the presented trade-off can be scaled into a future ar-
chitecture, by correlating the number of blocks to the num-
ber of stream processors, and correlating the number of pos-
sible threads per block to the image resolution.

5 Conclusion

We have investigated the optimization of FIR filtering,
while using NVIDIA CUDA as the case-study platform. We
did not loose generality as CUDA strongly resembles both



Figure 9. The (a) design trade-off in a small image of 10 × 10, or equivalently, massive amount of pro-
cessors, and (b) its contemporary linearization (in an 256 × 256 image) due to platform constraints.

OpenCL and DirectX 11 compute shaders. These novel
paradigms exhibit an advanced SIMT execution model on
top of a quasi hybrid DSM architecture. However, there
are hard platform constraints, such as the limitations of
the amount of threads that can simultaneously be executed
on the same multiprocessor, the penalty for divergence in
SIMD warps, memory coalescing to speedup off-chip data
communication, and the responsibility of maximizing spa-
tiotemporal utilization or processor occupancy. Although
some automatic optimization is available, we have indicated
the importance of manual intervention, and introduced mul-
tiple optimized implementation techniques using conven-
tional methods, kernel separation with SVD and finally an
FFT. We noticed that the conventional method outperforms
other techniques when considering small kernels. The SVD
technique is most appropriate whenever the convolution
kernel is separable, unless its kernel size grows too large, in
which it is always recommended to use the FFT technique.
Concerning scalability to the future, we noticed that with
current constraints, spatiotemporal utilization is inherently
taken care of. However, as these constraints will change in
the future, the trade-off between data communication and
processor occupancy will become more significant.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The Landscape of Paral-
lel Computing Research: A View From Berkeley. Electrical
Engineering and Computer Sciences, University of Califor-
nia at Berkeley, 18(183):19, December 2006.

[2] P. Bakker, L. J. Van Vliet, and P. W. Verbeek. Edge Preserv-
ing Orientation Adaptive Filtering. IEEE Computer Society
Conference on CVPR, 1:535–540, June 1999.

[3] C. Boyd. The DirectX 11 Compute Shader, 2008. Shading
Course SIGGRAPH.

[4] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pol-
lefeys. Real-Time Plane-Sweeping Stereo with Multiple
Sweeping Directions. IEEE Computer Society Conference
on CVPR, pages 1–8, June 2007.

[5] M. Gong, R. Yang, L. Wang, and M. Gong. A Performance
Study on Different Cost Aggregation Approaches used in
Real-Time Stereo Matching. International Journal of Com-
puter Vision, 75(2):283–296, November 2007.

[6] H. Jiang and V. Owall. FPGA Implementation of Real-
Time Image Convolutions with Three Level of Memory Hi-
erarchy. IEEE International Conference on Field-Program-
mable Technology (FPT), pages 424–427, December 2003.

[7] C. Lee and M. Hamdi. Parallel Image Processing Applica-
tions on a Network of Workstations. Parallel Computing,
21(1):137–160, 1995.

[8] Y. Luo and R. Duraiswami. Canny Edge Detection on
NVIDIA CUDA. IEEE Computer Society Conference on
CVPR Workshops, pages 1–8, June 2008.

[9] A. Munshi. OpenCL: Parallel Computing on the GPU and
CPU, 2008. Shading Course SIGGRAPH.

[10] B. R. Payne, S. G. Owen, S. O. Belkasim, M. C. Weeks, and
Y. Zhu. Accelerated 2D Image Processing on GPUs. Pro-
ceedings of the International Conference on Computational
Science, 3515:256–264, May 2005.

[11] V. Podlozhnyuk. FFT-based 2D Convolution. NVIDIA Cor-
poration white paper, 2007(3), June 2007.

[12] V. Podlozhnyuk. Image Convolution with CUDA. NVIDIA
Corporation white paper, 2007(3), June 2007.

[13] S. Rogmans, J. Lu, P. Bekaert, and G. Lafruit. Real-Time
Stereo-Based View Synthesis Algorithms: A Unified Frame-
work and Evaluation on Commodity GPUs. Signal Process-
ing: Image Communication, 24:49–64, January 2009.

[14] A. Smirnov and T. Chiueh. An Implementation of a FIR
Filter on a GPU. Technical Report, Experimental Computer
Systems Lab, Stony Brook University, September 2005.


