
Plane Sweeping in Eye-gaze Corrected,
Tele-immersive 3D Video Conferencing

Maarten Dumont, Patrik Goorts, Gauthier Lafruit

Abstract A tele-immersive video conferencing system for autostereoscopic 3D dis-
plays is presented. Eye contact between participants is restored by synthesizing
novel, interpolated views from multiple surrounding cameras, effectively emulating
a capturing camera position behind a virtually transparent display. Non-uniform,
adaptive plane sweeping with dynamic workload balancing yields real-time perfor-
mances on low-cost embedded GPU platforms.

1 Introduction

Imagine a world with perfect immersive teleconferencing, where people are able
to communicate remotely with an intense sense of human awareness that would be
virtually indistinguishable from real-life social communication. People would be
able to communicate seamlessly with their friends and family thousands of miles
away. Face-to-face meetings would be enabled without the need to travel, and tele-
collaboration would reach the holy grail of The Office Of The Future [22] with a
high level of immersion.

And yet, in spite of all the work already done in immersive teleconferencing and
the high level of quality reached in today’s video capturing and rendering technol-
ogy, this ultimate dream remains unrealized. What are the potential causes and how
can technology provide a solution to this problem?
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Gaze awareness and stereoscopic perception are actually important factors to
provide a high level of realism needed to feel oneself immersed in a natural social
environment [33]. Unfortunately, since cameras and displays cannot possibly oc-
cupy the same spatial position simultaneously, video conferencing participants are
unable to look each other in the eyes: a person who stares at the display will be
captured by the cameras as looking away at a slightly diverging angle.

An elegant way to solve this problem is to synthesize a virtual view in between
the surrounding camera views, as if it would be rendered by a camera positioned
right behind the screen, effectively restoring the correct head position and eye con-
tact [25], as shown in Figure 1.

Fig. 1 Restoring eye contact by synthesizing a virtual view in between the surrounding camera
views.

Synthesizing a multitude of such nearby views even supports stereoscopic (Fig-
ure 1, top right anaglyph) and glasses-free auto-multiscopic 3D displays (Figure 2),
where tens of nearby virtual views are projected in different directions, allowing the
viewer’s eyes to capture two parallax-correct images at any position in space for a
natural 3D perception.

This chapter presents a robust method for multi-camera view synthesis for eye
gaze correction and natural 3D video rendering, based on seminal work in plane
sweeping [7, 8, 13, 14]. Important improvements are proposed to target embedded
vision applications on GPU-accelerated platforms.
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Fig. 2 A plethora of multi-camera and lenticular display technology, providing all means to nat-
ural eye-gaze corrected and 3D video communication, is available on the market today. In auto-
multiscopic 3D displays, tens of nearby virtual views are projected in different directions, so that
the viewer’s eyes always capture two parallax-correct images at any position in space, hence pro-
viding glasses-free, natural 3D perception.

2 View Synthesis Prior Art

Early solutions in handling the problem of eye gaze correction in video conferencing
applied model-based approaches [28, 31] using a detailed head 3D model, which
is projected in the virtual viewpoint direction. This solution often lacks in natural
impression with participants talking to humanoid-looking avatars.

More advanced techniques therefore focus on image-based rendering approaches
(IBR) [1, 4], where a virtual view is synthesized with depth-based image warping
and inpainting techniques [20, 26]. Depth is hereby often recovered from stereo
matching [24] on a pair of sanline rectified images. The limited amount of 3D scene
parallax and associated depth information often results in visual artifacts in the syn-
thesized views. Solutions such as the ones of Schreer et al. [25] and Baker et al. [2]
overcome this limitation at the cost of using expensive dedicated hardware and/or
unpractical camera setups.

On the other hand, plane sweeping is a method that uses a multitude of cam-
eras and that by design is much more robust to camera illumination mismatches,
misalignments, etc. It recovers scene depth by sweeping over multiple depth plane
hypotheses for each pixel in the camera view that is to be reconstructed, hence its
name plane sweeping. In principle, plane sweeping does not need to explicitly ex-
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tract depth for handling view synthesis, though depth extraction helps in image post-
processing for boosting the natural perception of the virtual views.

Let’s first introduce the high-level concepts of these techniques, in order to better
understand the advantages of our full system prototype in section 3.

2.1 Stereo Matching

Stereo matching uses a pair of images to estimate the apparent movement of the pix-
els from one image to the next. This apparent movement is more specifically know
as the parallax effect as demonstrated in Figure 3, where two objects are shown,
placed at different depths in front of a stereo pair of cameras.

Fig. 3 Concept of stereo vision. A scene is captured using 2 rectified cameras. Stereo matching
attempts to estimate the apparent movement of the objects across the images. A large apparent
movement (i.e. parallax) corresponds to close objects (a low depth value).

When moving from the left to the right camera view, an object undergoes a dis-
placement – called the disparity – which is inversely proportional to the object’s
depth in the scene. Objects in the background (the palm tree) has a smaller dispar-
ity in comparison to objects in the foreground (the blue buddy). The goal of stereo
matching is to compute a dense disparity map by estimating each pixel’s displace-
ment.
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2.2 Plane Sweeping

To conceptually grasp the concept of plane sweeping, let us take a look at Figure 4.
Here cameras C1 to C3 are real cameras in an arbitrary configuration, whereas cam-
era Cv is the virtual camera view of which we wish to reconstruct the color image
and the scene depth.

Any voxel f in 3D space at e.g. depth plane D1 is projected onto the 2D pixels pi
on the image plane of the respective camera views. Conversely, inversely projecting
(i.e. deprojecting) the pixels pi into 3D space will have them match at one single
voxel f at the corresponding depth plane D1. On all other depth planes D j ( j ̸= 1)
the pixels pi deproject on points fi that do not coincide, as illustrated on depth
plane D2. Visually, reprojecting these points fi back into the virtual camera view Cv
causes a non-focused ghosting artifact in the resulting image, as can be observed in
the projected images ID2.

Fig. 4 Plane sweeping conceptually: deprojecting real cameras Ci (i = 1 . . .3) on different depth
planes Di for virtual camera Cv causes a non-focused ghosting artifact, depending on whether or
not the scene object in question is present at depth Di.

For instance, for the two-person scene of Figure 4, the person answering the
phone at the desk in the foreground is in focus at depth D1 (as can be seen in the
projected images ID1), whereas the person walking by in the background is out of
focus at the same hypothesized depth D1. The background person in turn is in focus
on depth plane D2 (as can be seen in the projected images ID2), hence suggesting
that his corresponding voxels are indeed at depth D2. Looking even deeper into the
scene, the whiteboard in the far background is de- and reprojected in focus at its
corresponding depth plane, say D4, and is now in fact readable (projected images
ID4).
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3 A System Prototype

We present a fully functional prototype that corrects the eye gaze of the video-
conferencing peers by using multiple cameras, using the plane sweeping method
reviewed in the previous section. The proposed six-fold camera setup is easily inte-
grated into the monitor frame of Figure 1 [7, 8].

Our software framework harnesses the powerful computational resources inside
the Graphics Processing Unit (GPU), achieving over real-time performance for Full
HD resolution images. Furthermore, although depicted as such in Figure 4, the dis-
tribution of the depth planes is not required to be uniform, which we elaborate on in
section 4 for further computational complexity savings.

In comparison, competitive solutions such as the system of Criminisi et al. [6]
implement their framework on commodity CPUs, resulting in a very low frame rate
when sufficient visual quality is required. Others optimize only parts of the applica-
tion, such as multi-camera video coding [5, 16] for efficient data communication and
real-time view synthesis [9, 21, 29] on graphics hardware, but neither of them inte-
grate and optimize the end-to-end performance for eye gaze-corrected video chat.

The core functionality of our system is visualized in Figure 5 and consists out
of five consecutive processing modules that are completely running on the GPU.
In an initial step (section 3.1), the camera sensor Bayer patterns ι1, . . . , ιN are cap-
tured from a total of N cameras C1, . . . ,CN that are fixed on a custom built metal
frame which closely surrounds the screen (see Figure 1). The first module com-
putes the RGB-images I1, . . . , IN , based on the method of Malvar et al. [19] [12],
and performs lens correction and image segmentation, as a form of preprocessing.
The preprocessing module is specifically designed to enhance both the quality and
speed of the consecutive view interpolation, and to ensure a high arithmetic intensity
in the overall performance.

Fig. 5 Data flow and overview of our system architecture.

The second module (section 3.2) interpolates an image Iv, as it would be seen
with a virtual camera Cv that is positioned behind the screen. The image Iv is com-
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puted as if camera Cv captures the image through a completely transparent screen.
Furthermore, the view interpolation module produces a joint depth map Zv, provid-
ing dense 3D information of the captured scene.

The synthesized image still contains a number of noticeable artifacts in the form
of erroneous patches and speckle noise. The third module (section 3.3) is there-
fore specifically designed to tackle these problems by detecting photometric outliers
based on the generated depth map.

Following the depth refinement, the image pixels are recolored using the filtered
depth information (section 3.4). Our system currently supports recoloring of the
synthesized image using all N cameras, or selecting the color from the camera which
has the highest confidence of accurately capturing the required pixel.

In a final step, the depth map Zv is also analyzed to dynamically adjust the system
and thereby avoiding heavy constraints on the user’s movements. This optimization
is performed in the plane distribution control module (movement analysis) and, as
previously mentioned, discussed in its dedicated section 4.

Besides the main processing on the graphics hardware that synthesizes Iv, the
virtual camera Cv needs to be correctly positioned to restore eye contact between
the participants. An eye tracking module (section 3.5) thereby concurrently runs on
CPU and determines the user’s eye position that will be used for correct placement
of the virtual camera at the other peer.

By sending the eye coordinates to the other peer, the input images ι1, . . . , ιN do
not have to be sent over the network (section 3.6), but can be processed at the local
peer. This results in a minimum amount of required data communication – i.e. the
eye coordinates and the interpolated image – between the two participants.

3.1 Preprocessing

Our system inputs Bayer patterns ι1, . . . , ιN , i.e. the direct camera sensor inputs (see
Figure 6(a)). The RGB-colored images I1, . . . , IN are consistently computed by using
the method of Malvar et al. [19], which is based on linear FIR filtering. This is
depicted in Figure 6(b). Uncontrolled processing that would normally be integrated
into the camera electronics is therefore avoided, guaranteeing the system’s optimal
performance.

Camera lenses, certainly when targeting the low-budget range, induce a radial
distortion that is best corrected. Our system relies on the use of the Brown-Conrady
distortion model [3] to easily undistort the input images on the GPU.

Each input image Ii with i ∈ {1, . . . ,N} is consequently segmented into a binary
foreground silhouette Si (see Figure 6(c)), to allow the consecutive view interpola-
tion to adequately lever the speed and quality of the synthesis process. Two meth-
ods of segmentation are supported; Green screening according to Equation 1, where
RIi ,GIi and BIi are the red, green and blue components of Ii. For clarity the pixel
location (x,y) has been omitted.
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Fig. 6 The preprocessing module performs demosaicing, undistortion and segmentation of the
input images.

Si =

{
1 : GIi > τg · (RIi +GIi +BIi)
0 : GIi ≤ τg · (RIi +GIi +BIi)

(1)

The second method is able to subtract a real-life background [18] according to
Equation 2, where IBi is the static background picture and τg, τ f , τb, τa are exper-
imentally determined thresholds which are subjected to parameter fine tuning. For
shadow removal, the cosine of the angle ÎiIBi between the color component vectors
of the image pixel Ii(x,y) and the static background pixel IBi(x,y) is determined. As
a final step, the silhouette is further enhanced by a single erosion and dilation [30].

Si =


1 : ∥Ii − IBi∥> τ f or

∥Ii − IBi∥ ≥ τb and cos(ÎiIBi)≤ τa
0 : ∥Ii − IBi∥< τb or

∥Ii − IBi∥ ≤ τ f and cos(ÎiIBi)> τa

(2)

Both methods are evaluated on a pixel basis and require very little processing
power, while still being robust against moderate illumination changes.

3.2 View Interpolation

To interpolate the desired viewpoint we adopt and slightly modify a plane sweeping
approach based on the method of Yang et al. [32]. As depicted in Figure 7(a), the 3D
space is discretized into M planes {D1, . . . ,DM} parallel to the image plane of the
virtual camera Cv. For each plane D j, every pixel fv of the virtual camera image Iv is
back-projected on the plane D j by Equation 3, and reprojected to the input images
Ii according to Equation 4. Here T j is a translation and scaling matrix that defines
the depth and extent of the plane D j in world space. The relationship between these
coordinate spaces is represented in Figure 7(b).

f = V−1
v ×P−1

v ×T j × fv (3)
fi = Pi ×Vi × f (4)
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Fig. 7 Concept of the plane sweep algorithm.

Points on the plane D j that project outside a foreground silhouette in at least
one of the input images, are immediately rejected – e.g. point g in Figure 7(a) –
and all further operations are automatically discarded by the GPU hardware. This
provides a means to lever both speed and quality because noise in the segmentation
masks will, with a high probability, not be available in all N cameras. Otherwise,
the mean (i.e. interpolated) color ψ and a jointly defined custom matching cost κ
are computed as in Equation 5.

ψ =
N

∑
i=1

Ii

N
, κ =

N

∑
i=1

∥ψ − Ii∥2

3N
(5)

As opposed to Yang et al. [32], we propose the use of all input cameras to com-
pute the matching cost. The plane is swept for the entire search range {D1, . . . ,DM},
and the minimum cost – together with the corresponding interpolated color – is per
pixel selected on a winner-take-all basis, resulting in the virtual image Iv (see Fig-
ure 8(a)) and a joint depth map Zv (see Figure 8(b)).
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Fig. 8 The view interpolation module generates a virtual image and joint depth map.

3.3 Depth Refinement

The interpolated image calculated in the previous section still contains erroneous
patches (see Figure 9(a)) and speckle noise due to illumination changes, partially
occluded areas and natural homogeneous texturing of the face. These errors are
even more apparent in the depth map Zv and we therefore propose a photometric
outlier detection algorithm that detects and restores the patches in Zv.

Fig. 9 Depth refinement and recoloring module concept.

To suppress the spatial high frequency speckle noise, we finally run a low-pass
Gaussian filter over the depth map.

3.3.1 Erroneous Patch Filtering

To detect erroneous patches, we propose a spatial filter kernel λ , as depicted in Fig-
ure 10(a). For every pixel zv of depth map Zv, a two dimensional depth consistency
check is performed according to Equation 6, where ε is a very small constant to
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represent the depth consistency. λ thereby defines the maximum size of patches that
can be detected.

∥Zv(x−λ ,y)−Zv(x+λ ,y)∥< ε or
∥Zv(x,y−λ )−Zv(x,y+λ )∥< ε (6)

Fig. 10 (a) The proposed filter kernel, and (b–d) the outlier detection concept.

If the area passes the consistency check in one of the dimensions, the depth pixel
zv – and therefore the joint image pixel fv – is flagged as an outlier if zv does not
exhibit the same consistency by exceeding a given threshold τo. Equation 7 shows
the outlier test when a depth consistency is noticed in the X-dimension, an analogous
test is used in case of consistency in the Y -dimension.∥∥∥∥Zv(x,y)−

Zv(x−λ ,y)+Zv(x+λ ,y)
2

∥∥∥∥> τo (7)

After performing the proposed filter kernel, the patch centers are detected, as
conceptually represented in Figure 10(b) and Figure 10(c). Consistently, a standard
morphological grow algorithm is executed, which causes the detected center to grow
only if the neighbouring pixels exhibit the same depth consistency as the initial out-
liers. As depicted in Figure 9(c) and 10(d), the complete patch is thereby detected.
As a final step for the patch filtering, the morphological grow is reversed and the
detected patch is filled with reliable depth values from its neighbourhood. Since all
of these operations are implemented on a pixel basis, they are inherently appropri-
ate for implementation on a GPU, achieving a tremendous speedup compared to a
generic CPU algorithm.

3.3.2 Speckle Noise Filtering

Due to the nature of the human face, a significant amount of large homogeneous
texture regions are present. As indicated by Scharstein and Szeliski [24] these areas
cause the depth map to contain spatial high frequency speckle noise. The noise
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is most effectively filtered by a low-pass filter, but this eliminates the geometrical
correctness of the depth map. A standard 2D isotropic Gaussian filter is applied on
the depth map and thanks to its separable convolution properties, it can even be
highly optimized on graphics hardware [11].

3.4 Recoloring

All of the previous refinement steps involve changing the depth map Zv, which is
normally – due to the plane sweep – jointly linked to the image color in Iv. To restore
this link, the refined depth map is used to recolor the interpolated image with the
updated depth values. As opposed to other more geometrically correct approaches
[17], we thereby significantly enhance the subjective visual quality. The system is
currently able to recolor the image in two different approaches, each having their
particular effect on the resulting quality.

3.4.1 N-camera Recoloring

The simplest and fastest recoloring solution is similar to the plane sweeping mech-
anism because it recomputes each pixel of the image Iv with an updated T j matrix
(Equation 3) according to the refined depth information. The interpolated pixel color
is then again obtained by averaging all N cameras.

This approach generates very smooth transitions of the input images in the syn-
thesized result, at the expense of loss of detail (see Figure 9(e)).

3.4.2 Confident Camera Recoloring

For each pixel fv of the image Iv, the second recoloring solution determines which
input camera Ci is closest in angle to the virtual camera Cv, and stores the camera
index in a color map Hv according to Equation 8, where hi = fCi is the vector from
f to Ci, and hv = fCv.

Hv = arg max
i∈{1...N}

cos(ĥv hi) (8)

We assume Ci to represent the optical image center of the camera, and f is the
image point fv back-projected to world space according to Equation 3, again with an
updated T j matrix. This recoloring scheme is illustrated in Figure 9(f), with depicted
color map Hv.

Selecting the color from a single camera defined in Hv, ensures a sharply detailed
synthesized image. However, the quality is sensitive to deviating colors between in-
put cameras due to variations in illumination and color calibration (see Figure 9(f)).
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3.5 Concurrent Eye Tracking

To restore the eye contact between the video chat participants, the camera Cv needs
to be correctly positioned. Eye tracking can be performed robustly and more effi-
ciently on CPU, and is therefore executed concurrently with the main processing of
the system.

The 3D eye position is then mirrored toward the screen, resulting in the correct
virtual viewpoint that is needed to restore the eye contact between the system users.
The two screens are placed in a common coordinate space, as if they were pasted
against each other. Hence, this creates the immersive effect of a virtual window into
the world of the other participant.

3.6 Networking

Our prototype system sends the eye coordinates over the network, and therefore the
requested image Iv can be computed locally at the peer that captures the relevant
images. These cross computations bring the required network communication to a
minimum, by avoiding the transfer of N input images. The total peer-to-peer com-
munication thereby exists out of the synthesized images and the eye coordinates.

4 Complexity Control

The previously discussed plane sweeping method is an efficient method to create
novel viewpoints. Nevertheless, we can increase performance even more by reduc-
ing the number of depth hypotheses. We propose 2 methods: an adaptive uniform
plane distribution method where the nearest and farthest depth values are adapted to
the scene, and an adaptive non-uniform plane distribution method, where the depth
planes themselves are redistributed in space to move computational power to the
places where there are actually objects. Both methods have other applications be-
sides video conferencing and are discussed below.

4.1 Adaptive Uniform Plane Distribution

Most of the time, the head of a single person is visible in the camera views. To
avoid heavy constraints on the participant’s movement, a large depth range has to be
scanned to keep the complete head in the virtual view. This actually infers a lot of re-
dundant computations, since the head of the user only spans a small depth range. We
therefore propose to dynamically limit the effective depth range to {Dmin, . . . ,Dmax}
(similar to Geys et al. [10], Rogmans et al. [23]) through a movement analysis on
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the normalized depth map histogram. This implicitly causes a quality increase of
the plane sweep, as the probability of a mismatch due to homogeneous texture
regions is significantly reduced. Moreover, all M depth planes can be focused as
{D1 = Dmin, . . . ,DM = Dmax}, which leverages the dynamic range and thereby sig-
nificantly increases the accuracy of the depth scan. Three separate cases can be
distinguished, as the user moves in front of the screen:

• Forward: If the user moves forward, he will exit the active scanning range. There-
fore, the histogram will indicate an exceptionally large number of detected depth
pixels toward Dmin.

• Stable: The histogram indicates a clear peak in the middle, this resolves to the
fact that the user’s head remains in the same depth range.

• Backward: Analog to forward movement of the user, the depth histogram will
indicate a peak toward Dmax.

As depicted in Figure 11(a) and Figure 11(b), we fit a Gaussian distribution func-
tion G(µ ,σ) with center µ and standard deviation σ on the histogram. The effec-
tive depth range is updated according to Equation 9 and Equation 10, where b1, b2
are constant forward and backward bias factors that can be adopted to the inherent
geometry of the scanned object. D′

min represents the previous minimal depth, and
∆ = D′

max −D′
min for denormalization.

D1 = Dmin = D′
min +(µ −b1 ·σ)∆ (9)

DM = Dmax = D′
min +(µ +b2 ·σ)∆ (10)

As the user performs forward or backward movement, the center µ of the Gaus-
sian fit changes and dynamically adapts the effective scan range of the system. The
image will briefly distort in this unstable case, but will quickly recover as the depth
scan is adapted for every image iteration. A real-time high frame rate therefore in-
creases the responsiveness of the system, and is able to achieve fast restabilization.
Normal moderate speed movement will thereby not be visually noticed by the par-
ticipants.

4.2 Adaptive Non-Uniform Plane Distribution

This method of changing the nearest and farthest depth plane is very powerful
for video conferencing with one person. There are, however, situations where this
method will not work, for example, when multiple people are standing and walking
around. Therefore, we present an optimization where the distribution of the planes
is adapted to the actual scene content, instead of only the nearest and farthest depth.

A histogram is calculated of the resulting depth map. This histogram guides the
plane distribution for the next temporal frame. This will redistribute computational
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Fig. 11 The depth histogram-based movement analysis in normalized coordinates.

power to the more dense regions of the scene, and consequently increase the quality
of the interpolation by reducing mismatches and noise.

When the scene consists of a limited range of depths between Dmin and Dmax,
some processing resources are allocated to depth planes where no objects are
present. This can be in between other objects. This is demonstrated in Figure 12(a).
Here, a lot of planes are placed in the scene where no objects are positioned. This
wastes resources and introduce more noise due to mismatches between the cameras.
Therefore, we rearrange the distribution of the depth planes to provide less planes in
depth ranges with less objects, and more, dense planes in scene regions with more
objects. We determine the interest of a depth by analyzing the previous frame in
a temporal sequence. The method works best when the movement of the scene is
limited, such as moving people or scenes with many static objects.

After the interpolation step, we generate the histogram of the depth map using
the well-known occlusion querying method [15] on GPU, allowing fast processing.
The histogram can be seen in Figure 12(b). The occurrence of every depth value, as
determined by the depth of the depth planes in the depth map, is counted. The his-
togram has discrete depth values between Dmin and Dmax, represented by the depth
plane numbers. Scene depths of high interest will contain more depth values than
depths of low interest. If there are depths in the scene where no objects are present,
few of this depth values will be available in the depth map and this is reflected in
the histogram. In the next frame, we want to provide more planes in depth ranges
where a lot of depth values can be found, thus where there are large values in the
depth histogram. The depth planes are not necessarily uniformly distributed, thus
the histogram uses the depth plane number as the bin value, instead of the depth
directly.
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Fig. 12 (a) Uniform plane distribution (b) Histogram of the depth values.

Fig. 13 (a) Resulting histogram (b) Corresponding cumulative histogram H(x).

To use the depth distribution information, we convert the histogram to its cu-
mulative version, as shown in Figure 13. Here, we do not count the number of oc-
currences per depth value, but we rather include the number of occurrences lower
than this depth. Furthermore, we rescale the depth values from [Dmin,Dmax], as rep-
resented by the depth plane numbers, to [0,1]. This transforms the non-uniform
distribution of the depth planes to actual normalized depth values between 0 and 1.
This transformation generates a monotonically increasing function H(x) = y, where
x ∈ [0,1] is a normalized depth value and y is the number of values in the rescaled
depth map smaller or equal to x. For values of x where there are a lot of correspond-
ing values in the depth map, H(x) will be steep. For values of x with a low number of
occurrences, H(x) will be flat. Because of the non-uniform depth-plane distribution
as input, H(x) will be constant at some points where there were no depth planes for
the corresponding normalized depth value.

We use the cumulative histogram to determine a mapping of a plane number
m with 0 ≤ m < M to a depth value Dm with Dmin ≤ Dm ≤ Dmax. For a uniform
distribution, this would be:
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Fig. 14 Detail of the cumulative histogram with discrete values. τ is calculated by determining
xσm and xσm + 1, such that H(xσm) ≤ σm and H(xσm + 1) > σm, where σm represents a depth
plane number.

Dm = Dmin +
m
M
(Dmax −Dmin) (11)

We adapt this uniform distribution method. When using the cumulative histogram
to determine the distribution, we calculate a fraction τm ∈ [0,1] based on the plane
number m, applied as follows:

Dm = Dmin + τm(Dmax −Dmin) (12)

The fraction τm is determined by the cumulative histogram. The Y axis is divided
in M cross sections, with a distance λ from each other, where λ = max(H)/M. Each
cross section represents a depth plane m. The actual depth fraction τm for each cross
section σm , i.e. a depth plane, is calculated by first determining the depth value
xσm where H(xσm)≤ σm and H(xσm +1)> σm. This is demonstrated in Figure 14.
Because the depth values x in the cumulative histogram are discrete, finding a value
xσm where H(xσm) = σm is unlikely, and not desirable when generating planes that
are dense, i.e. closer together, than the depth values provided in the cumulative
histogram.

Once xσm is determined, τm is calculated as follows:

ξ =
mλ −H(xσm)

H(xσm +1)−H(xσm)
(13)

τm = ξ (xσm +1)+(1−ξ )(xσm) (14)

Figure 13(b) shows the transformation from a uniform depth-plane distribution to
a non-uniform distribution based on the cumulative histogram. In region (1), where
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Fig. 15 Redistributed depth planes.

the cumulative histogram is steep, there is a dense plane distribution, as can be
seen at (1*). When the cumulative histogram is flat, a sparse plane distribution is
acquired, as can be seen at (2*).

Using τm, an actual depth for every plane m (0 ≤ m < M) is determined and used
in the plane sweeping step:

Dm = Dmin + τm(Dmax −Dmin) (15)

This is depicted in Figure 15. Here, the planes are redistributed using the cumula-
tive histogram of Figure 13(b). More planes are available for determining the depth
of the objects, and less planes are available in empty space. It is desirable to include
some planes in the empty spaces between objects to allow the appearance of objects
in dynamic scenes. To allow this, all the values in the histogram are increased with
a fixed number, based on the number of pixels. This way, the cumulative histogram
is less flat in less interesting regions, allowing some planes here.

5 Implementation and Optimizations

The use of carefully selected and adapted algorithms allows us to exploit the GPU
for general-purpose computations, a technique that is often referred to as general-
purpose GPU computing. Our framework harnesses the powerful computational re-
sources of the graphics hardware, and maximizes the arithmetic intensity of the
algorithm to ensure real-time performance.

The algorithm execution is further accelerated by elevating the processing granu-
larity from pixels to tiles, configured in a set of well-defined granularity parameters.
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The processing is hereby only performed on the vertices (i.e. corner points) of the
tiles, and therefore approximates – by inherent linear interpolation – the result of
pixels inside the tile.

5.1 Improved Camera Data Transfer

Experimental profiling shows that downloading RGB-colored input images to the
graphics card causes a three-fold increase in the data transfer time due to the mem-
ory bandwidth bottleneck of PCI-express, i.e. the bus connection between the moth-
erboard northbridge controller and the GPU. This severely reduces the frame rate to
two-third of its maximum capacity.

This bottleneck is effectively tackled by transferring Bayer-pattern images di-
rectly to the video memory. By inserting an additional demosaicing processing step,
more computations are introduced, but only one third of input image data has to
be sent, effectively increasing the performance over 30 percent. The reason is that
graphics hardware benefit high arithmetic intensity kernels, as they process compu-
tations significantly faster than transferring data.

5.2 Acceleration by Elevated Granularity

By elevating the processing granularity from pixels to tiles, the algorithm execution
speed can be drastically accelerated. In general, the computational complexity of
the processing is inverse proportional to the granularity of the tessellation. If the tile
size is chosen wisely, the speed can be significantly increased without noticeable
visual quality impact. Our system uses three optimization schemes based on these
speed-versus-quality trade-offs.

Tiled Undistortion Standard lens distortion is generally corrected on a pixel-
basis level, but can be approximated by applying an equivalent geometrical
undistortion to small image tiles using a resolution factor 0 < ρtu ≤ 1. Since
a GPU pipeline exists out of a geometry and pixel processing stage, the lens cor-
rection can hence be ported from the pixel to the geometry stage. The pixel pro-
cessing stage becomes clear to perform the consecutive segmentation processing
in a single pipeline pass, which significantly leverages the GPU utilization.

Tiled Tallying in Reduced Bins For the movement analysis, the multi-resolution
capabilities of the GPU are used to tally tiles instead of pixels in the histogram
bins. This sampling resolution is expressed by a factor 0 < ρs ≤ 1, where ρs is
proportional to the granularity of the tiles.
Evidently, it is of no use to have more histogram bins than the number of planes
in the sweep. However, the essential part is deriving the parameters µ and σ
to adjust the dynamic range of the depth scan. As depicted in Figure 11(c) and
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Figure 11(d), we are able to approximate the histogram by reducing the number
of bins, without a large impact on the Gaussian parameters. Therefore the number
of bins are defined proportional to the number of planes M, with factor 0 < ρb ≤
1. Heavily reducing the number of bins (see Figure 11(d)) causes the center µ to
become less accurate, as it is shifted toward the center of the effective scan range.
An optimal trade-off point can therefore be defined, since the accuracy loss will
cause the responsiveness of the system to decrease.

Tiled Splatting Identical to the tiled undistortion, the depth map can be tessel-
lated with a factor 0 < ρts ≤ 1 to form a mesh for splatting tiles instead of pixels.
This technique can significantly accelerate the confident camera recoloring, by
interpolating angles between the tile corners.

6 Results

We demonstrate our previously discussed methods using a prototype setup. Our pro-
totype setup is built with N = 6 auto-synchronized Point Grey Research Grasshop-
per cameras mounted on an aluminum frame, which closely surrounds the screen
(see Figure 1, top right). The presented camera setup avoids large occlusions, and
has the potential to generate high quality views since no image extrapolation is nec-
essary. We have used the Multi-Camera Self-Calibration toolbox [27] to calibrate
the camera setup offline, but a built-in camera setup into the screen would avoid this
procedure due to fixed calibration parameters. Our software framework runs on an
Intel Xeon 2.8GHz, equipped with 2GB system memory and an NVIDIA GeForce
8800GTX graphics card. Communication with the GPU is done through OpenGL,
and it is programmed with the high level GPU language Cg.

6.1 Visual Quality

Final quality results using N-camera view recoloring are shown in Figure 16(a), and
the results using confident camera recoloring are depicted in Figure 16(b). These
results are generated under moderate variable illumination conditions, but with a
fixed set of fine tuned practical system parameters summarized in Table 1. In Fig-
ure 16(a), some small artifacts along the ears and chin, together with minor ghosting
around the neck, can still be noticed due to limitations of the depth refinement. The
results generated with the confident camera recoloring are much more detailed and
sharp, however some minor artifacts can be noticed due to abrupt camera transitions
in the color map Hv. Nevertheless, the images maintain their integrity and are re-
garded as high subjective visual quality, while they convincingly seem to be making
eye contact with the reader.
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Fig. 16 Eye-gaze corrected images using (a) N-camera versus (b) confident camera recoloring.

Module Parameter Value

Preprocessing τg 0.355
τ f 0.010
τb 0.002
τa 0.998
ρtu 0.2

View Interpolation N 6
M 35

Depth Refinement λ 20
ε 0.2
τo 0.3

Confident Camera Recoloring ρts 0.2
Movement Analysis b1 2.0

b2 2.0
ρb 0.4
ρs 0.5

Table 1 Set of optimized system parameters.

6.2 Performance

A detailed workload profiling for the main processing modules – using confident
camera recoloring – can be seen in Figure 17, with input cameras and output resolu-
tions of 800×600 pixels. By using on-line demosaicing, the arithmetic intensity can
be kept relatively high, and even results in a higher execution speed than our pre-
vious implementation [7] using N-camera recoloring. The adaptive uniform plane
distribution method was used to reduce computational complexity.
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Fig. 17 Detailed workload profiling of the end-to-end optimized processing chain.

Summing up the different timings of the individual modules, we reach a confi-
dent speed of 27 fps for Full HD resolution, but our experimental setup is limited by
15 Hz support in the cameras and Firewire controller hardware. The current imple-
mentation speed allows for further quality optimization by advancing the algorithm
and computational complexity.

6.3 Adaptive Non-uniform Plane Distribution

To demonstrate the validity of the adaptive non-uniform plane distribution system
in multiple scenes, we created separate datasets with moving persons. We tested the
method on different scenes and compared image quality and planes required.

The experiment shows that the quality is higher when a low number of planes is
available, compared to the same number of planes using a uniform plane distribu-
tion. To increase the overall quality in both methods, we use foreground-background
segmentation. Figure 18(a) shows the result for a uniform depth plane distribution.
Artifacts caused by the sparse plane distribution can be clearly seen; the depth map
shows clear outliers. The depth map when using a non-uniform plane distribution,
based on the histogram of the first depth map, can be seen in Figure 18(b). Less
noise and outliers in the depth values can be perceived. Furthermore, the silhouette
is more distinct and the features of the persons are clearer. Using the non-uniform
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(a) (b)

(c)

Fig. 18 (a) Depth map with a uniform depth plane distribution. A low number of planes (50) is
used. (b) Depth map with a non-uniform depth plane distribution. A low number of planes (50)
is used. (c) Depth map with a uniform depth plane distribution. A high number of planes (256) is
used.

plane distribution increases the quality of the depth map using a low number of
planes, therefore increasing overall performance.

Figure 18(c) shows the result for a high number of planes. Here, some noise and
unclear edges can be perceived. These artifacts are effectively filtered out using the
non-uniform plane distribution. The depth planes generating vague edges and noise
are not used and cannot contribute to the depth map, and therefore to the noise and
artifacts.

To demonstrate the effect of the cumulative histograms, Figure 19 shows an input
image of a video sequence (a), the corresponding cumulative histogram of the depth
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map of the preceding frame (b) and the corresponding fraction τ from Equation 14
(c). When only one dominant depth can be perceived, such as in Figure 19(top), one
steep section in the cumulative histogram is visible. This part is transformed to a flat
value of τ , thus increasing the density of the planes in the corresponding region in
the sweeping space. Flat sections of the cumulative histogram correspond to steep
values in the graph of τ , resulting in a sparse plane distribution.

When multiple dominant depths are available in the scene, the cumulative his-
togram show multiple steep sections (see Figure 19, bottom). This results in multiple
dense regions in the plane distribution, as reflected by the values of τ .

7 Conclusions

In this chapter, we presented a prototype for 3D video conferencing with eye gaze
correction. A virtual camera is placed behind the display, and its image is synthe-
sized with image-based rendering from multiple real cameras around the display,
using a modified plane sweeping algorithm. A GPU implementation yields real-time
performances at high visual quality.

Performance is even further increased thanks to algorithmic complexity reduc-
tion approaches. We presented a method to reduce the computational requirements
by adapting the depth range and reducing the number of hypothesis depth planes
in the search space, redistributing them to places with a high object density. This
results in a substantial processing performance increase without impeding on the
visual quality of the view synthesis.
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